
Conservation laws and universality in branching annihilating random walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3921

(http://iopscience.iop.org/0305-4470/26/16/010)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 26 (1993) 39213930. Printed in the UK 

Conservation laws and universality in branching annihilating 
random walks 

Iwan Jensentf 
Department of Physics and Astronomy, Hehelt H Lei" College, City University of New 
York, Bronx. NY 10468, USA 

Received 4 May 1993 

Abstract. Recently, Takayasu and Tretyakov studied branching annihilating random walks with 
n = 1-5 offspring. Thcse models exhibit a conhuous phasc transitigl to an absorbing state. 
For odd n the models belong to the universality class of d i d  percolation. For even n the 
particle number is conserved modulo two and the aitical behaviour is not compatible wirh 
directed percolation. Ln this paper bnnching -Mating random walks wilh n = 4 plus an 
additianal process (spmraneaus annihilation) which b d s  l h e  cglsenration law are studied. 
The inclusion of spontaneous mihilation, wen at vely small rates, leads to directed percolation 
critical behaviour. 

1. Introduction 

Recently, Takayasu and Tretyakov [l], studied the branching annihilating random walk 
(BAW) with n = 1-5 offspring. In the BAW a particle is chosen at random. With probability 
p it jumps to a randomly chosen nearest neighbour and if this site is already occupied both 
particles are annihilated. With probability 1 - p the particle produces n offspring, which 
are placed on the closest neighbouring sites. When an offspring is created on a site which 
is already occupied it annihilates with the occupying particle leaving an empty site. In 
one dimension for n = 1 it has been shown [2] that the BAW has an active steady-state for 
sufiiciently small p .  Computer simulations revealed that the phase transition &om the active 
state to the absorbing state is continuous [I]. When n is odd there is a unique absorbing 
state. This type of phase transition has been studied in numerous other models such as 
the contact process [3-51, Schlogl's first and second models [6-91, directed percolation 
(DP) [1&12] and Reggeon field theory (m) [7,13]. Studies of related models demonstrate 
the robustness of this universality class against a wide range of changes in the local kinetic 
rules, such as multi-particle processes [14-161, diffusion [I71 and changes in the number 
of components [181. BAWs with an odd number of offspring include a combination of 
diffusion and various multi-particle processes. One would therefore expect, bearing in mind 
the robustness of DP critical behaviour, that the transition should belong to the universality 
class of directed percolation. me steady-state concentration of particles 6 (which is the the 
appropriate order parameter) decays as 

ij I P C  -PIS (1) 
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where p is the order parameter critical exponent. Estimates for p ,  obtained from computer 
simulations, were however only marginally consistent with directed percolation. Takayasu 
and Tretyakov [I] found pc  = 0.108iO.001 and p = 0.3210.01 which should be compared 
to the value pop = 0.2769 f 0.0002 [ 191 for directed percolation in 1 + 1 dimensions. For 
n = 3 and n = 5 they found that p c  = 0.461 iO.002 and 0.718 f 0.001. respectively, with 
p = 0.33 ?C 0.01 in both cases. Timedependent computer simulations [ZO] for ti = 1 and 3 
yielded estimates for three critical exponents in good agreement with directed percolation, 
thus supporting the notion that BAWs with an odd number of offspring belong to the DP 
univasality class. 

For n = 2 the model does not have an active steady state [211 whereas for n = 4 
it was found [ I ]  that p = 0.7(1), and the model does not belong to the DP universality 
class. Grassberger er al 1221 studied a model, involving the processes X -+ 3X and 
2X -t 0, very similar to the BAW with n = 2. Steady-state and time-dependent computer 
simulations, yielded non-DP values for various crilical exponents. Note that in both the 
model proposed by Grassberger er al and in BAWs with an even number of offspring the 
number of particles is conserved modulo two. This conservation law might be responsible 
for the non-DP behaviour. With this in mind a m o a e d  version of the BAW with n = 4 iS 
studied. If the conservation of particle numbcr modulo two is indeed responsible for the 
nOn-DP behaviour, breaking this conservation law should produce DP exponents. The easiest 
way to obtain this is probably by adding spontaneous annihilation of particles. To be more 
precise we study a model in which panicles diffuse, with probability P d ,  according to the 
BAW rules, are annihilated spontaneously with probability ( I  - pd)p. ,  or else create four 
offspring following the BAW rules. For p a  = 0 we thus recover the BAW with n = 4. 

2. Tie-dependent behaviour 

In this paper we present results from computer simulations of the one-dimensional BAW with 
n = 4 and spontaneous annihilation using time-dependent simulation and finite-size scaling. 
Earlier studies [7,12,15,16,23] have revealed that time-dependent simulation is a very 
effective method for locating critical points and estimating exponents. In time-dependent 
simulations we start from a configuration close to the absorbing state, and then follow the 
'average' time evolution of this configuration by simulating a large ensemble of independent 
realizations. In the simulations presented here we always started, at I = 0, with an empty 
lattice except for two occupied nearest neighbours at the origin. We then performed a 
number, N s ,  of independent runs, typically 5Oo00, for different values of pd in the vicinity 
of the critical point p ; .  The value of p a  remained fixed in each set of simulations. As the 
number of panicles is very small an efficient algorithm may be devised by keeping a list of 
occupied sites. In each elementary step a panicle is drawn at random from a i s  list and the 
processes are performed according to the rules given earlier. Before each elementary change 
the time variable is incremented by l / n ( t ) ,  where n ( r )  is the number of particles prior to 
the change. Thus one time step equals (on average) one attempted update per lattice site. 
Each run had a maximal duration of (M time steps. I measured the swival probability P ( I )  
(the probability that the system had not entered the absorbing state at time I ) ,  the average 
number of occupied sites i(f) and the average mean square distance of spreading $(r) 
from the centre of the lattice. Notice that i ( r )  is averaged over all mns whereas jZ( t )  is 
averaged only over the surviving runs. From the scaling ansatz for the contact process and 
similar models [7,12] it follows that the quantities defined above are governed by power 
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laws at p: as t + 00 

In log-log plots of P ( r ) ,  i ( r )  and R z ( f )  against t we should see asymptotically a straight line 
at pd = p i .  The curves will show positive (negative) curvature when pd < p: (Pd > p j ) .  
This makes it possible to obtain accurate estimates for p i .  The asymptotic slope of the 
(critical) curves define the dynamic critical exponents 6, q and z. Generally one has to 
expect corrections to the pure power law behaviour so that P ( t )  is more accurately given 
by (121 

P ( t )  U r - ' (1+ al-' + b t P '  + ' .) (5 )  

and similarly for i ( f )  and R Z ( r ) .  More precise estimates for the critical exponents can be 
obtained if one looks at local slopes 

and similarly for q ( t )  and 20); in this work we used m = 5. The local slope 8 ( t )  behaves 
as [I21 

b( t )  = 6 + UI- '  +- b6'td' + . . . (7) 

with similar expressions applying for q(1) and ~ ( 1 ) .  In a plot of the local slopes against 
l/t the critical exponents are given by the intercept of the curve for p: with the y axis. 
The off-critical curves often have a very notable curvature, i.e. one wiU see the curves for 
pd =. p z  veering downward while the curves for pd e p z  veer upward. 

2.1. Resultsfrom computer simulations 

In figure 1 the local slopes - & ( I ) ,  ~ ( t )  and z ( f )  for pa = 0.1 are plotted. In these 
simulations the maximal number of timesteps i~ = 1OooO and the number of independent 
NIL$ Ns = 50000. From these reSultS we see that the curve for q ( f )  at p d  = 0.491 00 has a 
notable upwards curvature when l / t  3 0. Likewise we see that the curve for p d  = 0.491 10 
veers downward, leading to the very precise estimate p i  = 0.491 05 f O.ooOO5. From 
the intercept of the 'critical' curves with the y axis we estimate 6 = 0.161 & 0.002, 
q = 0.312 f 0.005 and z = 1.26 2~ 0.01. These values for 6, q and z are in excellent 
agreement with the values obtained from series expansions for the contact process and 
related models [19]: 6 = 0.1597 kO.OO03, q = 0.314 k 0.003 and z = 1.266 k 0.007. As 
a further test of the consistency of the data one may use the scaling relation rr] 

6 = I(% 2 2  - O ) .  

It is clearly seen thai the estimates for the BAW given above agree very well with this scaling 
relation. 
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Figure 1. Local slopes -6(t) (upper panel), U(<) 
(middle panel) and Z ( I )  (lower panel), as defined m 
(6) with m = 5. fw p .  = 0.1. Each panel contains 
three curves with. from boaom to top, pd = 0.491 IO, 
0.491 05 and 0.491 00. 

Table 1. Estimzies for the location of the critical pint p i  and the critical exponents 6. q and z 
BS &aimed fmm timedependent simulations for various values of the sponLvlrous annihilation 
pmbability p.. 

P. P i  6 9 z 

0.1 0.49105(5) 0.161(2) 0.312(5) 1.26(1) 
0.01 0.6455(5) 0.162(4) 0.31?(8) l.265(15) 
0.001 0.6830(5) 0.155(10) 0.31(1) 1.25(2) 
0.MX)I 0.700(5) O.l5(1) 0.305(15) 1.23(3) 

We have just seen that the BAW with n = 4 and spontaneous annihilation belongs to 
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Figure 2. Local slopes -6(i), as defined in (6) with 
m = 5. far p. = 0.01 (upper panel), 0.001 (middle 
panel) and 0.WOI (lower panel). Fmm bottam to top 
the mlve corresponds to pd = 0.6460. 0.6455 and 
0.6450 in the upper p e l .  pd = 0.6835.0.6830.0.6825 
and 0.6820 in he middle panel. and finally pd = 0.705. 
0.700 and 0.695 in the lower panel. 

Figure 3. Same as in figure 2 but for the local slopes 
~ ( 1 ) .  

the DP universality class when the annihilation probability is relatively high. Three lower 
rates of spontaneous annihilation were also checked. In table 1 are listed the estimates for 
the critical point, p ; ,  and the critical exponents 6, q and z as obtained from time-dependent 
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simulations with pa = 0.1, 0.01,O.M)l and 0.0001. In these simulations we averaged over 
NS = 50000 independent samples for each value of Pd, and the maximal duration of each 
run was IM = 10000 for pa  = 0.1 and 0.01, rM = 25000 for pa = 0.001 and 0.0001. 
The values for the critical exponents show that the BAW belongs to the DP universality 
class even when p .  is as low as O.ooO1. One noticeable difference between the various 
values for p .  is the increased uncertainty in the estimates. As p .  decreases the short-time 
transient behaviour becomes more prominent and the estimation of the critical behaviour 
harder. This is clearly seen in figures 2 and 3 which depict the local slopes -&(I)  and 
q ( t )  for pa = 0.01,0.001 and 0.0001. As can be seen the local slopes exhibit pronounced 
short-time deviations from the DP values, which are however reached asymptotically at p i .  
In particular 4 ( r )  starts off below the DP value, which is clearly seen for pa = O.ooO1, 
then over-shoots before the asymptotic DP behaviour finally takes over at p:. ?( I )  starts 
off below the DP value but eventually increases and reaches the DP value. For pa = O.ooO1 
these short-time transients are very strong as both -a(() and ~ ( r )  are initially quite stable 
at values well below the DP exponents. The off-critical c w e s  exhibit a simiiar initial 
behaviour, however the asymptotic behaviour is different. For pd e p;  ( p d  z p:) we 
expect to see the local slopes veer upwards (downwards). A closer look at figures 2 and 3 
reveals that for p .  = 0.01 the curve for pa = 0.6460 veers downward while % curve for 
pd = 0.6450 veers upward, leading to the estimate p: = 0.6455 & 0.0005. Similarly we 
see that p;  = 0.6830 * 0.0005 for pa = 0.001 and p: = 0.700 & 0.005 for p.  = 0.0001. 
My estimates for the corresponding critical exponents, all of which are consistent with DP 
critical behaviour, are listed in table I. 

The similarity in the behaviour of the simulation results for the various values of pa is 
quite reassuring especially since the short-time effects become so pronounced when pa is 
decreased. The short-time transient behaviour for small p.. though very prominent, cannot 
totally obscure the hue asymptotic behaviour. It is thus with a great deal of confidence 
that we conclude that the timedependent simulations indicate that the BAW with n = 4 and 
spontaneous annihilation belongs to the DP universality class for a l l  values of pa 2 O.ooO1. 
In the next section we will show that this conclusion is supported by results from a finitesize 
scaling analysis. 

3. Finite-size scaling analysis 

The concepts of finite-size scaling [24,25], though originally developed for equilibrium 
systems, are also applicable to non-equilibrium second-order phase transitions. Auktust 
er al 1261 showed how finite-size scaling can be used very successfully to study the 
critical behaviour of non-equilibrium systems exhibiting a continuous phase msition to an 
absorbing state. Their method was later applied to models with infinitely many absorbing 
states 1271. As in equilibrium second-order phase transitions one assumes that the (infinite 
size) non-equilibrium system features a length scale. which diverges at criticality as 

where VL is the correlation length exponent in the soace direction. We expect finitesize 
effects to become important when the correlation length f ( p )  - L. The basic bite-size 
scaling ansatz is that the various quantities depend on systemsize only through the scaled 
length ~ / f ( p ) ,  or equivalently through the variable Ip: - pdlL'/"'. n u s  we assume that 
the order parameter depends on system size and distance from the critical point as 
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such that at pi 

p s ( p i .  L )  cx L-plvi (11) 

and 

~ ( x )  o( xp for x-+ 00 (12) 

so that (1) is recovered when L-+ 00 in the critical region. In p8, and other quantities, the 
subscript s indicates an average taken over the surviving samples, i.e. the average includes 
only those samples which have not yet entered the absorbing state. ?he reshiction to 
surviving samples is quite natural and ensures that a quantity such as ps becomes constant 
after a relative short transient time [26,27]. Once this quasisteady state has been reached 
one may perform the usual averages. Figure 4 is a log-log plot of the average concenmtion 
of particles p.(pi. L )  in the quasisteady state as a function of L at the critical point for the 
various values of pa studied earlier. The number of timesteps t M  and independent samples 
N S  varied from t = 500, N = 50000 for L = 16 to t~ = 1000o00, N = 100 for L = 40%. 
The slopes of the critical curves lie in the interval p/vl = 0.252-0.259, which is in very 
good agreement with the standard DP value 0.2523 O.OOO4 as obtained from the estimates 
p = 0.2769(2) [19] and vI = 1.0972(6) [28]. So these results confum that the model 
belongs to the DP universality class. Note however that while the asymptotic (large L) 
behaviour is DP-like, for small L the results show a very distinct deviation from the power 
law. These deviations become more pronounced as p. is decreased 

101 
L 

10 

Figure 4. Log-log plar of p,(p;, L)  against L for, 
fmm top to botlom pa = 0.1, 0.01, 0.001 and 0.0001, 
wifh the eorrespanding YalUeS far the critical paint 
p: = 0.491 05. 0.6455, 0.6830, 0.700. The results for 
s m e  of the pa vdues have been scaled so as La enswe 
a clear s e p d m  of the data poinls and thus make it 
easy to see &e behaviour of each set of data 

Figure 5. Log-log plot of ,y.@i, L) against L (see the 
caption lo figure 4 for details). 

Another exponent estimate can be obtained using the generalized susceptibility, which 

2 = Ld(bZ) - (6')') - Pdl-' (13) 

in the steady-state is defined as 
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to5 A ‘H 

I02 
L 

100 101 102 103 io4 
t 

Figure 6. Log-log plot of r*(p:, L) against L (see the 
captim to figure 4 for details). 

Figure 7. Log-log pld of the short-time decay of 
p,@:). with L = 8192, for. fmm top to bdtnR 
p. = O.l ,O.Ol,  0.001 and O.MxI1. 

where L is the linear extension of the system. is a quantity analogous to the susceptibility 
as defined for equilibrium magnetic systems. Actually ,ij is just a measure of the typical 
size of fluctuations. Equation (13) thus leads to the following finite-size scaling ansatz 

Xs(Pd. L )  c( LY’”’g((p; - pd)L””’) (14) 
and 

x*(p;, L )  cx LY‘Wl. (15) 
Figure 5 shows a log-log plot of the susceptibility x.(p;, L )  as a function of L.  The 
slopes of the lines are y/vL N 0.50 which is in excellent agreement with the DP value 
0.496(2) as obtained horn the estimate y = 0.544 rt 0.001 [28]t. Again we see Ihdt the 
large L behaviour is DP-lie. But this time the deviations for small L are more severe, 
and in particular we sec that for pa = O.ooO1 DP behaviour has not been attained even for 
L = 4096. 

Additional exponents may be obtained from the dynamical behaviour of the system. In 
this study we deEne a characteristic time, t ( P d .  L ) ,  as the time it takes for half the samples 
to enter the absorbing state. In general one has to expect Ihat the characteristic time diverges 
as pd + p;  from above in the steady-state 

S ( P )  IP; - PI-”’ (16) 
where ull is the correlation length exponent in the time direction. This leads to the following 
finite-size scaling form 

T(Pd,  L )  LYh((P; - Pd)L””’) (17) 
where y = u , ~ / u ~ .  At p;  we thus have 

S(p;. L )  cx LY. 

In figure 6 is plotted, on a log-log scale, z9(p& L )  as a function of L. The slopes of the 
lines yield estimates of q / u ~  in the range 1.57-1.59 which again agrees perfectly with the 
DP value 1.579(2) as obtained from the estimate ull = 1.733 f 0.001 [28]. Again we see 
that the large L behaviour is OP-like. The deviations for small L are less severe. 

t Tbe notation for the critical exponents difien fmm that of direcied prcdatim. @. ”11 and YL are the same. bul 
yDp = y + YU + ( I  - d ) v ~ .  W e  used the latter relation to &in the estimate for y .  
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One may also study the dynamical behaviour by looking at the time dependence of 
p d p z .  L, I). For f >> 1 and L >> 1 one can assume a scaling form 

p&J:. L. I )  o( L-B’”,f(l/LY). (19) 

At p: the system shows a power law behaviour for I LY before finite-size effects become 
important. Thus for L >> 1 and I < LY, p(p i ,  L ,  f )  o( f-’. From (19) we see that this is 
the case for large L only if the scaling relation 

e = B / ( v ~ Y )  = B I V ~ ~  (m 
holds. Figure 7 shows the short-time evolution of the concentration of particles at p i  for the 
various values of pa  studied in this article. The asymptotic behaviour yields the estimate 
0 2: 0.16 for pa = 0.1 and 0.01, and e N 0.17 for pa = 0.001 and 0.0001. These estimates 
agree pretty well with the value for directed percolation 0 = B/v,l = 0.1598(3), as obtained 
from the estimates cited above for ,9 and U+ 

4. Summary and discussion 

In this article the results from a study of branching annihilating walks with four offspring 
and spontanwus annihilation of particles are reported. The regular BAW with four offspring 
exhibits a critical behaviour that is distinctly different from that of directed percolation. The 
addition of spontaneous annihilation changes this critical behaviour even when pa is as low 
as 0.0001. I have obtained several independent exponent estimates, using lime-dependent 
simulations and finite-size scaling, all of which are consistent with DP critical behaviour. 
This is very firm evidence that the BAW with four offspring and spontaneous annihilation 
belongs to the DP universality class. The non-DP behaviour of the BAW with four offspring 
and the model proposed by Grassberger el al [22] is probably due to the conservation 
of particle number modulo two. The fact that breaking this conservation law, by adding 
spontaneous annihilation, results in DP critical behaviour certainly supports this notion. 

While we find DP behaviour asymptotically for all values of pa studied there are some 
very pronounced short-time and small-size effects. These effects become more important 
when pa is decreased. In particular for p .  = 0.0001 these effects are so strong that some 
of the methods used to obtain exponent estimates either fail or yield very poor estimates. 

Acknowledgments 

I would l i e  to thank Ron D i c k ”  for his hospitality during my stay at Lehman College 
and for many insii-uctive and stimulating discussions. The calculations were performed on 
the facilities of the University Computing Center of the City University of New York. 

References 

[ I  1 Takayasu H and Tretyakov A Yu 1992 Phys. Rev. le#. 68 3060 
[ZJ B r a ”  M and Gray L 1985 2. Wamch. venv. Cebiete 68 441 
[31 Harris T E 1974 Ann. Prob. 2 969 
I41 Liggea T M 198.5 Inremcfing Pnrficle Systems (Berlin: Springer) 
151 Durrett R 1988 Lecture Notes on Parficle Systems and Percolofion (Pacific Gmve. CA: Wadsworth) 



3930 I Jensen 

161 Schltigl F 1972 2 Phys. B 253 147 
PI Grassbcrger P and de la Tome A 1979 Ann. Phys., NY U2 373 
181 Jansnen H K 1981 Z. Phys. B 42 151 
[9] Gmsbergcr P 1982 2. Phys. B 41 365 

[IO] Cardy I L and Sugar R L 1980 3, Phys. A :  Moth. Gen. 13 L423 
[I l l  JanssenHK l985Z.Phys.B58311 
[I21 Grassberger P 1989 3. Phys. A: Math. Gen. 22 3673 
[I31 Brower R C. Funnan M A and Mashe M 1978 Phys. Len. 7W 213 
I141 Bidaur R, Borrara N and Chai H 1989 Phys. Rev. A 39 3094 

Iensen I 1 9 9 1  Phys. Rev. A 43 3187 
[I51 Dick" R 1990 Phys. Rev. A 42 6985 
I161 Dickman Rand Tome T 1991 Phys. Rev. A 44 4833 
I171 Dick" R 1989 Phys. Rev. B 40 7005 
[I81 Ziff R M. Gulari E and Banhad Y 1986 Phy. Rev. L m .  56 2553 

Grinstein G. h i  2-W and Brawne D A 1989 Phys. Rev. A 40 4820 
Jearen 1, Fagedby H C and Didvnan R 1990 Phys. Rev. A 41 341 I 

[I91 Jolsen I and Dickman R 1993 J. slor. Phys. 71 89 
1201 Jensen I 1993 Phy$. Rev. E 47 I 
[Zl] Sudbury A 1990 Ann. Probnb. 18 581 
[U]  Grassbcrger P. Krause F and v m  der Twer T 1984 J.  Phyr. A: Morh. Gen. 17 L105 

Grassberger P 1989 3. Phys. A: Math. Gen. 22 LI 103 
[23] Jensen I 1992 Phys. Rev. A 45 R563; 1992 Pkys. Rev. A 46 7393 
I241 Fisher M E 1971 Prm. Ewico Fermi lnkrnaabnol Schaol cf PhyriCs vol 51, ed M S Green (Varenna: 

Fisher M E and Barber M N 1972 Pky.  Rev. Lcu. 28 1516 
[ E ]  Barber M N 1983 Phose Tronritionr ondCriricnl P h p n ~ m e ~  "01 8. ed C D m b  and 1 L Lebowitz View 

[261 Aukrust T. Bmwe D A and Webman I 1990 Phys. Rev. A 41 5294 
1271 lensen I 1993 Phys. Rev. Lerr. 70 1465 

Jensen I and Dick" R Nonequiliblium phase tmsitims in systems with inhitely many absorbing state 

1281 Essam 1 W. De'Bell K. Adler 1 and Bhani F M 1986 Phys. Rev. B 33 1982 
Essam J W, Gvltmann A I and De'BeU K 1988 3. Phys. A: Math. Gen. 21 3815 

Academic) 

York: Academic) 

Phys. REV. E, in press 


